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Abstract. Single pseudoscalar and vector mesons hard semi-inclusive photoproduction γh → MX via
higher twist mechanism is calculated using the QCD running coupling constant method. It is proved that
in the context of this method a higher twist contribution to the photoproduction cross section cannot
be normalized in terms of the meson electromagnetic form factor. The structure of infrared renormalon
singularities of the higher twist subprocess cross section and the resummed expression (the Borel sum)
for it are found. Comparisons are made with earlier results, as well as with leading twist cross section.
Phenomenological effects of studied contributions for π, K, ρ-meson photoproduction are discussed.

1 Introduction

One of the fundamental achievements of QCD is the pre-
diction of asymptotic scaling laws for large-angle exclusive
processes and their calculation in the framework of pertur-
bative QCD (pQCD) [1-3]. In the context of the factorized
QCD an expression for an amplitude of an exclusive pro-
cess can be written as integral over x,y of hadron wave
functions (w.f.)1 Φi(x, Q̂2) (an initial hadron), Φ∗f (y, Q̂

2)
(a final hadron) and amplitude TH(x,y;αS(Q̂2), Q2) of
the hard-scattering subprocess [2]. The hard-scattering
amplitude TH(x,y;αS(Q̂2), Q2) depends on a process and
can be obtained in the framework of pQCD, whereas the
w.f. Φ(x, Q̂2) describes all the non-perturbative and pro-
cess-independent effects of hadronic binding. The hadron
w.f. gives the amplitude for finding partons (quarks, glu-
ons) carrying the longitudinal fractional momenta x =
(x1, x2, ... xn) and virtualness up to Q̂2 within the hadron
and, in general, includes all Fock states with quantum
numbers of the hadron. But only the lowest Fock state
(q1q2 - for mesons, uud - for proton, etc.) contributes to
the leading scaling behavior, other Fock states’ contribu-
tions are suppressed by powers of 1/Q2. In our work we
shall restrict ourselves by considering the lowest Fock state
for a meson. Then, x = x1, x2 and x1 + x2 = 1.

This approach can be applied for investigation, not
only exclusive processes but also for the calculation of
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1 Strictly speaking, ΦM (x, Q̂2) is a hadron distribution am-
plitude and it differs from a hadron wave function; the former
can be obtained by integrating the corresponding wave func-
tion over partons’ transverse momenta up to the factorization
scale Q̂2. But in this paper we use these two terms on the same
footing

higher twist (HT) corrections to some inclusive processes,
such as large-pT dilepton production [4], two-jet+meson
production in the electron-positron annihilation [5], etc.
The HT corrections to a single meson semi-inclusive pho-
toproduction and jet photoproduction cross sections were
studied by various authors [6,7]. In these early papers for
calculation of integrals over x = x1, x2, like

I ∼
∫
αS(Q̂2)Φ(x, Q̂2)F (x, αS(Q̂2), Q2)

×δ(1− x1 − x2)dx1dx2 (1)

which appear in an expression of the amplitude, the frozen
coupling constant approximation was used. Some com-
ments are in order concerning this point. It is well known
[8], that in pQCD calculations the argument of the run-
ning coupling constant (or the renormalization and factor-
ization scale) Q̂2 should be taken equal to the square of
the momentum transfer of a hard gluon in a corresponding
Feynman diagram. But defined in this way, αS(Q̂2) suffers
from infrared singularities. Indeed, in a meson form factor
calculations , for example, Q̂2 equals to x1y1Q

2 or x2y2Q
2,

−Q2 being the four momentum square of the virtual pho-
ton. In the single meson photoproduction γh→MX, this
scale has to be chosen equal to −x1û or x2ŝ, where û, ŝ
are the subprocess’s Mandelstam invariants [6]. Therefore,
in the soft regions x1 → 0, y1 → 0;x2 → 0, y2 → 0 or
x1 → 0, x2 → 0 integrals (1) diverge and for their cal-
culation some regularization methods of αS(Q̂2) in these
regions are needed. In the frozen coupling approximation
these difficulties were avoided simply by equating Q̂2 to
some fixed quantity characterizing the process. In form
factor calculations this is Q̂2 ≡ Q2/4 [9], in the single
meson photoproduction - Q̂2 ≡ ŝ/2,−û/2 [6].

Recently, in our papers [10,11] devoted to the investi-
gation of the light mesons electromagnetic form factors,
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Fig. 1. Feynman diagrams contributing to the higher twist
subprocess γq → Mq. Here p and P are the hadron h and
meson M four momenta, respectively

for their calculation we applied the running coupling con-
stant method, where these singularities had been regu-
larized by means of the principal value prescription [12].
In our recent work we consider the hard semi-inclusive
photoproduction of single pseudoscalar and vector mesons
γh→MX using the same approach.

2 Calculation of the higher twist diagrams

The two HT subprocesses, namely γq1 →Mq2 and γq2 →
Mq1 contribute to the photoproduction of the single me-
son M in the reaction γh → MX . The Feynman dia-
grams for the first subprocess are shown in Fig. 1. We do
not provide the set of diagrams corresponding to the sec-
ond subprocess γq2 → Mq1; they can be obtained from
Fig. 1 by exchanging the quark and antiquark lines. The
momenta and charges of the particles in question are in-
dicated in Fig. 1(a). In our investigation the meson mass
is neglected. As is seen from Fig. 1, in the HT subpro-
cess the meson M is coupled directly to the photon and
the hadron quark and its suppression in comparison with
leading twist subprocesses is caused by a hard gluon ex-
change in the higher twist diagrams.

The amplitude for the subprocess γq1 → Mq2 can be
found by means of the Brodsky-Lepage method [2],

M =
∫ 1

0

∫ 1

0
dx1dx2δ(1− x1 − x2) (2)

×TH(x1, x2;αS(Q̂2), ŝ, û, t̂)ΦM (x1, x2; Q̂2)

In (2), TH is the sum of graphs contributing to the hard-
scattering part of the subprocess, which for the subprocess
under consideration is γ+q1 → (q1q2)+q2, where a quark
and antiquark from the meson form a color singlet state
(q1q2).

The important ingredient of our study is the choice
of the meson model w.f. ΦM . In this work we calculate
the photoproduction of the pseudoscalar (pion, kaon) and
vector (ρ-meson) mesons. Here for the pion and kaon we
use the phenomenological w.f. obtained in [3] by applying
the QCD sum rules method. The ρ-meson w.f. was calcu-
lated using the QCD sum rules method in [3,13], results of
which contradict to each other. In [13] the authors claimed

that the difference with [3] is due to an error, namely a
wrong sign of the contribution of four-fermion operators
to the sum rule for the transversely polarized ρ-meson,
which they found in [3]. This sign difference has dramatic
consequences for the shape of the wave function. Thus, in
accordance with results of [13], the wave functions of longi-
tudinally and transversely polarized ρ-mesons are similar
(coincide in shape), whereas in [3] a significant difference
between them was predicted. In [13] the authors suggested
also that the change in shape of the transverse ρ-meson
w.f. may increase the rate of the production of transversely
polarized ρ-mesons by a factor 2. Having left for further
investigations the problem of the ρ-meson w.f., in this ar-
ticle for calculation of the ρ-meson photoproduction we
utilize both w.f. found in [3] and derived in [13], empha-
sizing that they are not different model wave functions.

The pion and ρ-meson wave functions have the form

ΦM (x, µ2
0) = ΦMasy(x)

[
a+ b(2x− 1)2

]
. (3)

For the model w.f. the coefficients a, b take the following
values:
Chernyak-Zhitnitsky w.f. [3];

a = 0, b = 5,
for the pion,

a = 0.7, b = 1.5, (4)
for the longitudinally polarized ρL −meson,

a = 1.25, b = −1.25,
for the transversely polarized ρT −meson.

Ball-Braun w.f.[13];

a = 0.7, b = 1.5,

for both longitudinally and transversely polarized ρ-meson.
Here we have denoted by x ≡ x1 the longitudinal frac-
tional momentum carrying by the quark within the meson.
Then, x2 = 1− x and x1 − x2 = 2x− 1.

The pion and ρ-meson w.f. are symmetric under re-
placement x1 − x2 ↔ x2 − x1. But the kaon w.f. is non-
symmetric; ΦK(x1 − x2) 6= ΦK(x2 − x1) [3]. Indeed, the
kaon w.f. includes a term proportional to odd power of
(2x− 1),

ΦK(x, µ2
0) = ΦKasy(x)

[
a+ b(2x− 1)2 + c(2x− 1)3

]
, (5)

a = 0.4, b = 3, c = 1.25,

and may be written as the sum of the symmetric Φs(x, µ2
0)

and antisymmetric Φa(x, µ2
0) parts,

Φs(x, µ2
0) = ΦKasy(x)

[
a+ b(2x− 1)2

]
,

Φa(x, µ2
0) = ΦKasy(x)c(2x− 1)3. (6)

In (3), (5), (6) ΦMasy(x) is the asymptotic w.f.

ΦMasy(x) =
√

3fMx(1− x), (7)

where fM is the meson decay constant; fπ = 0.093 GeV ,
fK = 0.112 GeV . In the case of the ρ-meson we take
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fLρ = fTρ = 0.2 GeV for the CZ w.f., and fLρ = 0.2 GeV ,
fTρ = 0.16 GeV for BB w.f.

The normalization of ΦM (x, µ2
0) at µ0 = 0.5 GeV is

given by the condition∫ 1

0
dxΦM (x, µ2

0) =
fM

2
√

3
. (8)

The factor
√

2 appearing in the normalization of a vector
meson is included in the ρ-meson decay constant.

The formalism for calculation of the HT subprocess
cross section is well known and described in [6,14]. We
omit details of our calculations and write down the final
expression for dσ̂HT /dt̂. We find:

for the pseudoscalar and longitudinally polarized vec-
tor mesons,

dσ̂HT (e1, e2)
dt̂

=
32π2CFαE

9ŝ2

×
{
−e

2
1

ŝ2

[
I2
1 t̂− 2I1 (I1ŝ+ I2û)

û

t̂
+ I2

2
û2

t̂

]
− e22
û2

[
K2

1 t̂− 2K1 (K1û+K2ŝ)
ŝ

t̂
+K2

2
ŝ2

t̂

]
(9)

− 2e1e2
ŝût̂

[
I1K1t̂

2 − I1(K2ŝ+K1û)ŝ−K1(I1ŝ+ I2û)û
]}

.

for the transversely polarized vector meson,

dσ̂HT (e1, e2)
dt̂

=
64π2CFαE

9ŝ4
−t̂
û2 [e1ûI2 − e2ŝK2]

2 (10)

In (9),(10), αE ' 1/137 is the fine structure constant,
CF = 4/3 is the color factor. The Mandelstam invariants
for the subprocess are defined as

ŝ = (zp+ q)2 = zs,

t̂ = (q − P )2 = t, (11)
û = (zp− P )2 = zu,

where s, t, u are the Mandelstam invariants for the process
γh→MX , z is the longitudinal fractional momentum of
the quark q1 out of the hadron h.

The main problem in our investigation is the calcula-
tion of quantities I1,2, K1,2,

I1 = (12)∫ 1

0

∫ 1

0

dx1dx2δ(1− x1 − x2)αS(Q̂2
1)ΦM (x1, x2; Q̂2

1)
x2

,

I2 = (13)∫ 1

0

∫ 1

0

dx1dx2δ(1− x1 − x2)αS(Q̂2
1)ΦM (x1, x2; Q̂2

1)
x1x2

,

and

K1 = (14)∫ 1

0

∫ 1

0

dx1dx2δ(1− x1 − x2)αS(Q̂2
2)ΦM (x1, x2; Q̂2

2)
x1

,

K2 = (15)∫ 1

0

∫ 1

0

dx1dx2δ(1− x1 − x2)αS(Q̂2
2)ΦM (x1, x2; Q̂2

2)
x1x2

,

where for I1, I2 the renormalization and factorization scale
is Q̂2

1 = x2ŝ, for K1,K2 it is given by Q̂2
2 = −x1û.

Let us first consider the frozen coupling constant ap-
proximation. In this approximation we put Q̂2

1,2 equal to
their mean values ŝ/2,−û/2 and remove αS(Q̂2

1,2) as the
constant factor in (12-15). After such manipulation, the
integrals (12-15) are trivial and can easily be found. For
the mesons with symmetric w.f. we get

I0
2

(
ŝ

2

)
= 2I0

1

(
ŝ

2

)
≡ αS

(
ŝ

2

)
IM

(
ŝ

2

)
,

K0
2

(
− û

2

)
= 2K0

1

(
− û

2

)
≡ αS

(
− û

2

)
IM

(
− û

2

)
,

where superscript ”0” indicates that the quantities I,K
are found in the frozen coupling approximation. Here the
function IM (Q̂2) is

IM (Q̂2) =
∫ 1

0

dxΦM (x, Q̂2)
x(1− x)

.

In this approximation, using the last expressions and (9),
(10), (12–15) one can easily reproduce results of [6] for the
subprocess cross section2.

In the case of the kaon we find

I0
1

(
ŝ

2

)
= αS

(
ŝ

2

)[∫ 1

0

dxΦs(x, ŝ/2)
1− x

+
∫ 1

0

dxΦa(x, ŝ/2)
1− x

]
,

I0
2

(
ŝ

2

)
= 2αS

(
ŝ

2

)∫ 1

0

dxΦs(x, ŝ/2)
1− x

. (16)

It is evident that

I0
2 (ŝ/2) 6= 2I0

1 (ŝ/2).

The same is also true for K0
1 and K0

2 . This means
that in the case of a pseudoscalar meson with the non-
symmetric w.f. the result of [6] is not valid and in the cal-
culations our expressions (9),(12-15) have to be applied.

The important problem in the single meson photopro-
duction is the possibility of normalization of the HT sub-
process cross section (9),(10) in terms of the electromag-
netic form factor FM (Q2) of the corresponding meson.

The electromagnetic form factor FM (Q2) of the meson
M is given by the expression

FM (Q2) =
∫ 1

0

∫ 1

0
Φ∗M (y, Q̂2)T ffH (x, y;αS(Q̂2), Q2)

×ΦM (x, Q̂2)dxdy. (17)
2 The difference between our expressions and corresponding

formulas in [6] is caused by our definition of the antiquark’s
charge, i.e. in our expressions the charge of the antiquark from
M is −e2, whereas in [6] it is denoted by e2
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Here

T ffH (x, y;αS(Q̂2), Q2) =
16πCF
Q2

×
[
e1
αS(Q2(1− x)(1− y))

(1− x)(1− y)
− e2

αS(Q2xy)
xy

]
.

For the meson with symmetric w.f. using the frozen cou-
pling approximation (Q̂2 → Q2/4) we get

FM (Q2) =
16πCFαS(Q2/4)

Q2 (e1 − e2)

×
(∫ 1

0

ΦM (x,Q2/4)dx
1− x

)2

. (18)

It is not difficult to conclude that for such mesons the
quantities (I0)2 and (K0)2 in the cross section can be
expressed in terms of FM[

I0
1 (ŝ/2)

]2
=

αS(ŝ/2)
16πCF

[
Q2

∣∣FM (Q2)
∣∣]∣∣∣∣

Q̂2=2ŝ
(19)

[
I0
2 (ŝ/2)

]2
=

αS(ŝ/2)
4πCF

[
Q2

∣∣FM (Q2)
∣∣]∣∣∣∣

Q̂2=2ŝ

For mesons with non-symmetric w.f. from (17) we find

FM (Q2) =
16πCFαS(Q2/4)

Q2

×
{

(e1 − e2)
(∫ 1

0

Φs(x,Q2/4)dx
1− x

)2

+(e1 − e2)
(∫ 1

0

Φa(x,Q2/4)dx
1− x

)2

+ 2(e1 + e2)
(∫ 1

0

Φs(x,Q2/4)dx
1− x

)
×
(∫ 1

0

Φa(x,Q2/4)dx
1− x

)}
. (20)

It is now clear that (I0)2, (K0)2 (16) are not proportional
to FM (20). This means that even in the context of the
frozen coupling approximation the HT subprocess cross
section may be normalized in terms of the meson form
factor only if the photoproduction of the meson with sym-
metric w.f. is considered.

3 The running coupling constant method
and IR renormalons

In this section we shall calculate the integrals (12-15) using
the running coupling constant method and also discuss the
problem of normalization of the higher twist process cross
section in terms of the meson electromagnetic form factor
obtained in the context of the same approach.

As is seen from (12-15), in general, one has to take into
account not only the dependence of α(Q̂2

1,2) on the scale
Q̂2

1,2, but also an evolution of ΦM (x, Q̂2
1,2) with Q̂2

1,2. The
meson w.f. evolves in accordance with a Bethe-Salpeter
type equation, but its dependence on Q̂2 is mild and may
be neglected by replacing ΦM (x, Q̂2

1,2) → ΦM (x, µ2
0). Such

approximation does not change considerably numerical re-
sults, but phenomenon considering in this article (effect of
infrared renormalons) becomes transparent.

Let us clarify our method by calculating the integral
(12); the quantities I2,K1,2 can be worked out in the same
way. For the mesons with symmetric w.f. (12) in the frame-
work of the running coupling approach takes the form

I1(ŝ) =
∫ 1

0

αS((1− x)ŝ)ΦM (x, µ2
0)dx

1− x
. (21)

The αS((1 − x)ŝ) has the infrared singularity at x → 1
and as a result integral (21) diverges (the pole associated
with the denominator of the integrand is fictitious, be-
cause ΦM ∼ (1− x), and therefore, the singularity of the
integrand at x = 1 is caused only by αS((1 − x)ŝ)). For
the regularization of the integral let us relate the running
coupling at scaling variable αS((1 − x)ŝ) with the aid of
the renormalization group equation in terms of the fixed
one αS(ŝ). The renormalization group equation for the
running coupling α(ŝ) ≡ αS(ŝ)/π

∂α(λŝ)
∂ lnλ

' −β0

4
[α(λŝ)]2 , (22)

has the solution

α(λŝ) ' α(ŝ)
1 + (α(ŝ)β0/4) lnλ

. (23)

In (22),(23), the one-loop QCD coupling constant αS(µ2)
is defined as

αS(µ2) =
4π

β0 ln(µ2/Λ2)

β0 = 11 − 2nf/3 being the QCD beta-function first coef-
ficient.

Having inserted (23) into (21) we get

I1(ŝ) = αS(ŝ)
∫ 1

0

ΦM (x, µ2
0)dx

(1− x)(1 + (1/t) ln(1− x))
, (24)

where t = 4π/αS(ŝ)β0.
The integral (24) is, of course, still divergent, but now it
is recasted into a form, which is suitable for calculation.
Using the method described in details in our work [10] it
may be found as a perturbative series in αS(ŝ)

I1(ŝ) ∼
∞∑
n=1

(
αS(ŝ)

4π

)n
Sn, Sn = Cnβ

n−1
0 . (25)

The coefficients Cn of this series demonstrate factorial
growth Cn ∼ (n − 1)!, which might indicate an infrared
renormalon nature of divergences in the integral (24) and



S.S. Agaev: Single meson photoproduction and IR renormalons 325

corresponding series (25). The procedure for dealing with
such ill-defined series is well known; one has to perform
the Borel transform of the series [15]

B[I1](u) =
∞∑
n=1

un−1

(n− 1)!
Cn, (26)

then invert B[I1](u) to obtain the resummed expression
(the Borel sum) for I1(ŝ). This method is straightforward
but tedious. Therefore, it is convenient to apply the sec-
ond method, used in our work [11], which allows us to
bypass all these intermediate steps and find directly the
resummed expression for I1(ŝ). For these purposes let us
introduce the inverse Laplace transform of 1/(t+ z)

1
t+ z

=
∫ ∞

0
exp[−(t+ z)u]du. (27)

Then I1(ŝ) may be readily carried out by the change of
the variable x to z = ln(1− x) and using (27)

I1(ŝ) =
4
√

3πfM
β0

∫ ∞

0
exp

[
− 4πu
αS(ŝ)β0

]
(
a+ b

1− u
− a+ 5b

2− u
+

8b
3− u

− 4b
4− u

)
. (28)

Equation (28) is nothing more than the Borel sum of
the perturbative series (25) and the corresponding Borel
transform is

B[I1](u) =
a+ b

1− u
− a+ 5b

2− u
+

8b
3− u

− 4b
4− u

. (29)

The series (25) can be recovered by means of the following
formula

Cn =
(
d

du

)n−1

B[I1](u)

∣∣∣∣∣
u=0

.

The Borel transform B[I1](u) has poles on the real u
axis at u = 1; 2; 3; 4, which confirms our conclusion con-
cerning the infrared renormalon nature of divergences in
(25). To remove them from (28) some regularization meth-
ods have to be applied. In this article we adopt the prin-
cipal value prescription [12]. We obtain

[I1 (ŝ)]res =
4
√

3πfM
β0

[
(a+ b)

Li(λ)
λ

− (a+ 5b)
Li(λ2)
λ2

+8b
Li(λ3)
λ3 − 4b

Li(λ4)
λ4

]
, (30)

where Li(λ) is the logarithmic integral [16], for λ > 1
defined in its principal value

Li(λ) = P.V.

∫ λ

0

dx

lnx
, λ = ŝ/Λ2. (31)

For other integrals from (13–15) we find

[I2 (ŝ)]res =
4
√

3πfM
β0

(32)[
(a+ b)

Li(λ)
λ

− 4b
Li(λ2)
λ2 + 4b

Li(λ3)
λ3

]
,

and

[K1 (−û)]res = [I1 (−û)]res ,
[K2 (−û)]res = [I2 (−û)]res . (33)

From (30),(32),(33), we conclude that in the framework of
the running coupling approximation even for mesons with
symmetric w.f. we have

[I2 (ŝ)]res 6∼ [I1 (ŝ)]res , [K2 (−û)]res 6∼ [K1 (−û)]res .

Therefore only our results for the subprocess cross section
(9),(10) are correct.

Another question is, as we have discussed in Sect. 2,
the normalization of the meson photoproduction cross sec-
tion in terms of the meson elm form factor. The pion
and kaon form factors have been calculated by means of
the running coupling approach in our previous papers [10,
11]. Let us write down the pion form factor obtained us-
ing the pion’s simplest w.f., that is, the asymptotic one
(a = 1, b = 0 in (4))

[
Q2Fπ(Q2)

]res
asy

=
(16πfπ)2

β0

[
−3

2
+ (lnλ− 2)

Li(λ)
λ

+(lnλ+ 2)
Li(λ2)
λ2

]
. (34)

From (30),(34) it follows that the relations (19) do no
longer hold. The same is also true for the pion’s other
w.f., as well as for ρL− and ρT−mesons. In other words,
in the running coupling approach the HT subprocess cross
section (9),(10) cannot be normalized in terms of the me-
son form factor neither for mesons with symmetric w.f.
nor for non-symmetric ones.

Let us, for completeness, write down I(ŝ),K(−û) cal-
culated for non-symmetric w.f. (5)

[I1 (ŝ)]res =
4
√

3πfM
β0

[
(a+ b+ c)

Li(λ)
λ

− (a+ 5b+ 7c)
Li(λ2)
λ2 + 2(4b+ 9c)

Li(λ3)
λ3

−4(b+ 5c)
Li(λ4)
λ4 + 8c

Li(λ5)
λ5

]
, (35)

[I2 (ŝ)]res =
4
√

3πfM
β0

[
(a+ b+ c)

Li(λ)
λ

−2 (2b+ 3c)
Li(λ2)
λ2 + 4(b+ 3c)

Li(λ3)
λ3

−8c
Li(λ4)
λ4

]
. (36)

The expressions for [K1 (−û)]res and [K2 (−û)]res may
be obtained from (35),(36) by c → −c, λ = ŝ/Λ2 →
−û/Λ2 replacements, respectively. With these explicit ex-
pressions and the results of [11] at hand one can check our
statements concerning the normalization of the subprocess
cross section for kaons.



326 S.S. Agaev: Single meson photoproduction and IR renormalons

Some comments are in order concerning these results.
It is instructive to compare sources of the infrared renor-
malons in our case and in other QCD processes consid-
ered in [17]. In these articles the running coupling constant
method was used in one-loop order calculations for resum-
mation of any number of fermion bubble insertions in the
gluon propagator. This technique corresponds to partial
resummation of the perturbative series for a quantity un-
der consideration. Indeed, in the framework of pQCD, the
perturbative series for a physical quantity has the form
(25), where the coefficients Sn have the following expan-
sion in powers of β0,

Sn = Cnβ
n−1
0 +Rnβ

n−2
0 +Dnβ

n−3
0 + . . . .

By defining the Borel transform of this series as in (26)
(that is, using only the leading term Cn and neglecting
non-leading ones Rn, Dn, etc.) and inverting it one gets
a partially resummed expression for a physical quantity.
At the same time, as was proved in [17], the only source
of terms of order ∼ βn−1

0 in Sn and, equivalently, the
source of IR renormalons in the Borel transform, is the
running coupling constant. This means that partial re-
summation of the perturbative series for a quantity and
calculation of corresponding one-loop Feynman diagrams
with running coupling should give the same results, which
was demonstrated by explicit computations in [17]. In
our calculations of the HT cross section we use the lead-
ing order term for TH ; there are no gluon loops in the
Feynman diagrams in Fig. 1 and consequently, we do not
perform a loop integration in our calculations. Neverthe-
less, the integration in (2) over the meson quark’s (anti-
quark’s) longitudinal fractional momentum generates the
perturbative series for the HT subprocess amplitude M .
The coefficients of this series Sn have exactly ∼ βn−1

0 de-
pendence (Rn = Dn . . . = 0)and, hence, the expressions
(30),(32),(35),(36) can be considered as exact sums of the
corresponding perturbative series. In other words, exclu-
sive processes, as well as HT subprocesses for calculation
of which the Brodsky-Lepage method are used, have the
additional source of IR renormalons.

Another question commonly discussed in papers in-
volving IR renormalons is an ambiguity produced by the
principal value prescription used for the regularization of
divergent integrals (28). The ambiguity introduced by our
treatment of (28) is a higher twist and behaves as Λ2/Q̂2

(the first renormalon pole is u = 1). But the subprocess
under consideration itself is already the higher twist one.
Therefore, we can safely ignore such ”HT-to-HT” correc-
tions.

At the end of this section let us write down the HT cor-
rection to the single meson photoproduction cross section
by taking into account both HT subprocesses; γq1 →Mq2
and γq̄2 → Mq̄1. It is not difficult to prove that the sec-
ond subprocess cross section can be obtained from (9),(10)
by e1 ↔ e2 replacement. Then the HT correction to the
single meson photoproduction cross section is given by

σHT

dp2
T dy

= z∗
∑
q1,q̄2

{
qh1 (z∗,−t)dσ̂

HT (e1, e2)
dt̂

+ q̄h2 (z∗,−t)dσ̂
HT (e2, e1)

dt̂

}
s

s+ u
. (37)

where

z∗ =
pT e

−y
√
s− pT ey

.

Here the sum runs over the hadron’s quark q1 and an-
tiquark q2 flavors. In (37) qh1 (z∗,−t), qh2 (z∗,−t) are the
quark and antiquark distribution functions, respectively.
All r.h.s. quantities are expressed in terms of the process
c.m. energy

√
s, the meson transverse momentum pT and

rapidity y using the following expressions

ŝ =
spT e

−y
√
s− pT ey

, t̂ = −pT
√
se−y, û = − p2

T

√
s√

s− pT ey
.

(38)
Equation (37) is the final result which will be used later
in our numerical calculations.

4 Photoproduction of mesons
at the leading twist level

In our study of the single meson photoproduction a crucial
point is the comparison of our results with leading twist
(LT) ones. This will enable us to find such domains in the
phase space in which the higher twist photoproduction
mechanism is actually observable.

The LT subprocesses, which contribute to a meson
photoproduction are:
a photon-quark (antiquark) scattering

γ(q) + qi(p1) → qi(p2) + g(p3), (γqi → qig), (39)

and photon-gluon fusion reactions

γ(q) + g(p1) → qi(p2) + qi(p3). (40)

In this article we consider the inclusive cross section dif-
ference in the photon-proton collision, namely

∆M =
dσ

dp2
T dy

(γp→M+X)− dσ

dp2
T dy

(γp→M−X)

≡ ΣM+ −ΣM− . (41)

The LT subprocess which dominates in this difference is
γq → gq with q →M . Its cross section at the tree level is
well known,

dσ̂LT

dt̂
= −8παEe2q

3ŝ2

[
αS(ŝ)

t̂

ŝ
+ αS(−t̂) ŝ

t̂

]
, (42)

where the Mandelstam invariants of the subprocess are

ŝ = (q + p1)2, t̂ = (q − p2)2, û = (q − p3)2.

In (42), the running coupling constant αS is evaluated
at momentum scales ŝ and | t̂ |, which are equal to off-
shell momenta carried by the virtual quark propagators in
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the corresponding Feynman diagrams of the leading twist
subprocess γq → gq.

Many other subprocesses contribute to the meson pho-
toproduction, among them i) γq → gq with g → M ,
ii) γq̄ → gq̄ with q̄ → M , iii)γq̄ → gq̄ with g → M ,
iv)γg → qq̄ with q → M or q̄ → M . Considering the
cross section difference ∆M we not only reduce the number
of subprocesses contributing to ∆M , because the subpro-
cesses involving gluons or antiquarks contribute equally
to ΣLT

M+ and ΣLT
M− and cancel in ∆LT

M , but also solve two
other important problems. The first one is the next-to-
leading order correction to the meson photoproduction
cross section calculated in [18]. In this paper the authors
have investigated the ratio

Cπ+−π− =
dσHO(γp→ π+X)/dpT dy − dσHO(γp→ π−X)/dpT dy
dσBorn(γp→ π+X)/dpT dy − dσBorn(γp→ π−X)/dpT dy

= K − 1,

for the cross section difference as a function of pT at
√
s =

14.1 GeV and y = 0.5. They have found that this ratio is
negative and almost constant with pT (pT = 2−6 GeV/c).
This means that the K-factor for the cross section differ-
ence is less than 1. In other words, using the LT cross
section (42) for calculations of RM =| ∆HT

M /∆LT
M | at

the same or slightly different kinematic regimes, we only
underestimate the ratio RM and related quantities and
give lower bounds for them. The second problem solved
by our choice of ∆M is a contribution to the photopro-
duction cross section originating from the photon’s quark
and gluon content. It is well known that the photopro-
duction process γp → h + X may proceed via two dis-
tinct mechanisms; photon can interact either directly with
the hadron’s partons (direct photoproduction), or via its
quark and gluon content (resolved photoproduction). As
was demonstrated in [18], the contribution from the re-
solved photoproduction almost completely cancel in the
π+ − π− difference. These results obtained in [18] for pi-
ons at certain kinematic domain seemingly are valid also
for other light mesons at the same or slightly different
kinematic conditions.

Then the leading twist contribution to the single meson
photoproduction in γp→MX is given by the expression,

dσLT

dp2
T dy

=
∑
q

∫ 1

xmin

dxqp(x,−t̂)DM/q(z,−t̂)
z

dσ̂LT

dt̂
, (43)

where

z =
pT e

−y

x
√
s

+
pT e

y

√
s
, xmin =

pT e
−y

√
s− pT ey

. (44)

In (43), qp(x,−t̂) and DM/q(z,−t̂) are a quark q distribu-
tion and fragmentation functions, respectively. The sub-
process invariants ŝ, t̂, û in (43) are functions of s, pT , y,

ŝ = xs, t̂ = −pT
√
se−y

z
, û = −xpT

√
sey

z
. (45)

Equation (43) together with (37) for the HT contributions
will be applied in the next section for numerical calcula-
tions.

5 Numerical results

In this section we compute the γp → M+X and γp →
M−X semi-inclusive cross sections ΣM+ , ΣM− , as well
as the difference ∆M = ΣM+ − ΣM− by taking into ac-
count the dominant LT (γq → gq with q → M), and
HT (γq → Mq) contributions to the semi-inclusive pho-
toproduction. Only the HT cross section of K− photo-
production is calculated using the proton s and ū quarks
induced subprocesses, which contribute at the same or-
der. Our calculations are performed for M = π ,K, ρ at√
s = 14.1 GeV, 25 GeV .

In this work, for quark distribution functions, we bor-
row the leading order parametrization of Owens [19]. This
parametrization is suitable for our purposes, because the
HT mechanism probe the quark distribution functions at
z∗ = pT exp (−y)/√s − pT exp (y), which for chosen pro-
cess’s parameters is always more than 0.01. The same is
also true for xmin in the LT cross section (43). That is,
kinematical conditions allow us to avoid the region of small
x ≤ 0.01, where Owen’s parametrization may give incor-
rect results. The same reason will enable us to compute
ΣLT
M ignoring a contribution from the leading twist sub-

process γg → qq̄, which otherwise may be considerable.
The quark fragmentation functions are taken from [20].

Recently, in [21], a new set of fragmentation functions
for charged pions and kaons, both at leading and next-
to-leading order, have been presented. These functions
give DM++M−

q (x,Q2), but not DM±
q (x,Q2). Therefore, we

cannot apply them in our calculations.
The other problem is a choice of the QCD scale pa-

rameter Λ and number of active quark flavors nf . The
HT subprocesses probe the meson w.f. over a large range
of Q2, Q2 being equal to ŝ or −û. It is easy to find that
−ûmin > 4.04 GeV 2, while ŝmin > 16 GeV 2. For momen-
tum scales ŝ,−t̂ used in (42) as arguments of αS in the
LT cross section we get

−t̂min > 6 GeV 2, ŝmin > 16 GeV 2.

In other kinematic domains these scales take essen-
tially larger values. Taking into account these facts we find
it reasonable to assign Λ = 0.1 GeV, nf = 5 throughout
in this section.

Results of our numerical calculations are plotted in
Figs. 2–8. First of all, it is interesting to compare the
resummed HT cross sections with the ones obtained in
the framework of the frozen coupling approximation. In
Fig. 2, the ratio rM = (ΣHT

M )res/(ΣHT
M )o for negatively

charged particles (π−,K−) is shown. In the computing of
(ΣHT

M )o we have neglected the meson’s w.f. dependence
on the scale Q̂2. Let us emphasize that for the kaon we
have used the frozen coupling version of our expression
(9), but not the Bagger-Gunion formula from [6], which is
incorrect in that case.
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Fig. 2. Ratio rM = (ΣHT
M )res/(ΣHT

M )o, where (ΣHT
M )res and

(ΣHT
M )o are HT contributions to the photoproduction cross

section calculated using the running and frozen coupling ap-
proximations, respectively. The ratio is depicted as a function
of pT a, and of the rapidity b

As is seen from Fig. 2(a), rπ− ' 1 almost for all pT ,
whereas rK− falls from rK− ' 2.75 at pT = 2 GeV/c, y =
0 until rK− ' 2.13 at pT = 11 GeV/c, y = 0 and from
rK− ' 2.71 at pT = 2 GeV/c, y = 0.5 till rK− ' 1.5 at
pT = 11 GeV/c, y = 0.5. For K− this ratio demonstrates
also a sharp dependence on y at fixed

√
s, pT (Fig. 2(b)).

In all of the following figures we have used the re-
summed expression for the HT cross section. In Fig. 3
the ratio RM =| ∆HT

M /∆LT
M | is depicted. For all parti-

cles the LT cross section difference is positive ∆LT
M > 0,

since ΣLT
M+ ∼ up(x,−t̂)e2u, while ΣLT

M− ∼ dp(x,−t̂)e2d. The
smaller quark charge ed and the smaller distribution func-
tion dp both suppress ΣLT

M− [6]. The HT cross section dif-
ference may change sign at small pT and become negative
∆HT
M < 0. For example, ∆HT

π− < 0 at 2 GeV/c ≤ pT ≤
11 GeV/c for

√
s = 25 GeV, y = 0 and at 2 GeV/c ≤

pT ≤ 9 GeV/c for
√
s = 25 GeV, y = 0.5. Only at the

phase-space boundary pT > 11 GeV/c in the first case or
at pT > 9 GeV/c in the second one ΣHT

π+ > ΣHT
π− . There-

fore, we plot the absolute value of RM . The similar picture
has been also found for other mesons.

Fig. 3. Ratio RM =| ∆HT
M /∆LT

M | for the pion a, and for the
kaon b at fixed rapidity y=0. In c RM is plotted as a function
of y for the pion (dashed curve) and for the kaon (solid curve)

As is seen from Figs. 3(a),(b) for pion and kaon the
HT contribution is comparable with the LT one only at
pT ≤ 3 GeV/c. We do not find a considerable and stable
growth of HT contributions at large values of pT for all
the cross section differences ∆HT

M (M = π,K), as well
as, for all ΣHT

M . Thus, ΣHT
K−/Σ

LT
K− is small at high pT for

different
√
s (Fig. 4(a)). At the same time ΣHT

K+ /ΣLT
K+ is a

rising function of pT for pT > 4 GeV/c (
√
s = 14.1 GeV )

and pT > 7 GeV/c (
√
s = 25 GeV ).
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Fig. 4. The dependence of the ratio ΣHT
K /ΣLT

K for K+ and
K− on pT a and on y b

The cross section differences ∆LT
M and ∆tot

M = ∆LT
M +

∆HT
M as functions of pT are shown in Fig. 5. For the pion

the total cross section difference ∆tot
π in the region of small

pT is smaller than ∆LT
π due to ∆HT

π < 0 in this region
(Fig. 5(a)). But for kaon ∆tot

K > ∆LT
K in the same kine-

matic domain. For both mesons the difference between
∆tot
M and ∆LT

M cross sections is small.
The rapidity dependence of RM at

√
s = 25 GeV, pT =

3 GeV/c plotted in Fig. 3(c) illustrates not only the ten-
dency of the HT contributions to be enhanced in the re-
gion of negative rapidity, but also reveals an interesting
feature of the HT terms; as is seen from Fig. 3(c) the ratio
RM is an oscillating function of the rapidity. This prop-
erty of the HT terms may have important phenomenolog-
ical consequences. In fact, in Fig. 6 we have depicted ∆tot

M
and ∆LT

M versus rapidity. In both cases, owing to observed
property of ∆HT

M (y), in certain domains of the rapidity in-
terval −2 ≤ y ≤ 2.105 the total cross section difference is
more than ∆LT

M and in some ones less than ∆LT
M . In the

case of the kaon photoproduction

∆tot
K > ∆LT

K , for − 2 ≤ y ≤ 0.3 and 1.8 ≤ y ≤ 2.105,

∆tot
K < ∆LT

K , for 0.3 ≤ y ≤ 1.8.

The properties of the HT terms found in the pion
and kaon photoproduction processes persist also in the

Fig. 5. The cross section difference ∆M is shown at fixed ra-
pidity for pions a, and for kaons b. For the curves 1 the process
c.m. energy is

√
s = 14.1GeV , for the curves 2 -

√
s = 25GeV

ρ-meson photoproduction. But now the HT contributions
change the whole picture of the process arising from the
ordinary LT calculations. Thus, as in the case of the pion
photoproduction, the HT terms are enhanced relative to
the leading ones and ∆HT

ρ < 0 almost for all pT . But now
| ∆HT

ρ | takes such large values that it even changes the
sign of the total cross section difference. That is, if in ac-
cordance with the LT estimations Σtot

ρ+ > Σtot
ρ− must be

valid for all pT , for pT < pcT we find Σtot
ρ+ < Σtot

ρ− . The
value of pcT depends on the process parameters, as well as
on the ρ-meson w.f. used in calculations. At pt ≈ pcT we
have Σtot

ρ+ ≈ Σtot
ρ− .

Our results are shown in Fig. 7. For the parameters
indicated in the figure a critical value of pT is: pcT1 '
5.05 GeV/c for CZ w.f., and pcT2 ' 6.25 GeV/c for BB
w.f. In all kinematic domains the HT contributions found
using BB w.f. exceed the ones obtained by applying CZ
w.f., that is, | ∆HT

ρ (BB) |>| ∆HT
ρ (CZ) |. For exam-

ple, the ratio | ∆HT
ρ (BB)/∆HT

ρ (CZ) | equals to 2.39 at
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Fig. 6. The cross section difference ∆M as a function of the
rapidity for pions a; for kaons b

√
s = 25 GeV, pT = 5 GeV/c, y = 0, or to 2.63 at√
s = 25 GeV, pT = 3 GeV/c, y = −1. Our results con-

firm the conclusion made by the authors in [13] concern-
ing a possibility of increasing the rate of the production
of transversely polarized ρ-meson. Similar pictures persist
in Fig. 8, where ∆LT

ρ and ∆tot
ρ are depicted as functions

of the rapidity y. In Fig. 8(a), for the process parame-
ters

√
s = 25 GeV, pT = 3 GeV/C we have: in domain

I ′ (−1.74 ≤ y ≤ 1.3) the total cross section difference for
CZ w.f. is negative, in I (−1.5 ≤ y ≤ 1.5) - ∆tot

ρ (BB) < 0.
In Fig. 8(b) the same is shown for

√
s = 25 GeV, pT =

5 GeV/c. In two other regions lying outside of I(I ′) the
Σtot
ρ+ exceeds Σtot

ρ− (for −2 ≤ y ≤ −1.5, Σtot
ρ (BB) and for

−2 ≤ y ≤ −1.74, Σtot
ρ (CZ) are negligible and are not

shown).
It is worth noticing that in [6] the authors considered

the ρ-meson photoproduction at the same process’s pa-
rameters and predicted Σtot

ρ < 0 at pT ≤ 3 GeV/c, but
could not find similar effects for Σtot

ρ in dependence on
the rapidity. Our investigations prove that Σtot

ρ < 0 at

Fig. 7. ∆ρ for ρ-meson. The solid curve describes ∆LT
ρ ,

whereas the dashed curves correspond to ∆tot
ρ . The long-dashed

curve has been obtained using the CZ w.f., the short-dashed
one- BB w.f. In the domains I(BB w.f.) and I ′(CZ w.f.) the
absolute value of | Σtot

ρ | or Σtot
ρ− −Σtot

ρ+ is plotted

pT < pcT and pcT well into deep perturbative domain. We
have also demonstrated that the same phenomenon exists
for yc1 ≤ y ≤ yc2.

6 Concluding remarks

In this work we have calculated the single meson hard
semi-inclusive photoproduction via higher twist mecha-
nism and obtained the expressions for the subprocess γq →
Mq cross section for mesons with both symmetric and
non-symmetric wave functions. For the calculation of the
cross section we have applied the running coupling con-
stant method and revealed IR renormalon poles in the
cross section expression. IR renormalon induced diver-
gences have been regularized by means of the principal
value prescription and the resummed expression (the Borel
sum) for the higher twist cross section has been found.
Phenomenological effects of the obtained results have been
discussed.

Summing up we can state that:
i) for mesons with non-symmetric w.f. in the framework of
the frozen coupling approximation the higher twist sub-
process cross section cannot be normalized in terms of a
meson electromagnetic form factor;
ii) in the context of the running coupling constant method
the HT subprocess cross section cannot be normalized in
terms of meson’s elm form factor neither for mesons with
symmetric w.f. nor for non-symmetric ones;
iii) the resummed HT cross section differs from that found
using the frozen coupling approximation, in some cases,
considerably;
iv) HT contributions to the single meson photoproduc-
tion cross section have important phenomenological con-
sequences, specially in the case of ρ-meson photoproduc-
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Fig. 8. ∆ρ dependence on the rapidity at
√
s = 25 GeV, pT =

3 GeV/c for a; at
√
s = 25 GeV, pT = 5 GeV/c for b. The

solid curve corresponds to ∆LT
ρ , the long-dashed and short-

dashed curves describe ∆tot
ρ obtained using CZ and BB w.f.,

respectively. In regions I(BB w.f.) and I ′(CZ w.f.) the cross
section difference Σtot

ρ− −Σtot
ρ+ is shown

tion. In this process the HT contributions wash the LT
results off, changing the LT predictions.
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